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Runaway electrons during disruptions

Å One of the most difficult consequences of tokamak disruptions

Å Large uncertainties on RE generation on ITER

ÅDue to the avalanche amplification factor [Rosenbluth NF 1997], [Vallhagen JPP 

2020]

Å Some primary mechanisms still subject to uncertainties: tritium seed, 

Compton scattering, etc.

Å Currents of several MA at 10-20 MeV may be reached

ÅČ Significant damage on PFCs if left unmitigated
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JET in-vesselinspections ςmultiple 
runawayimpacts [V. Huber]

Runawayimpact on 
Tore Supra
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The ITER disruption and RE mitigation scheme

Å Based on Shattered Pellet Injection (SPI)

Å 24 barrels in equatorial ports + 3 barrels in upper ports

Å First line of defense:

Å TQ & CQ heat loads mitigation

Å CQ EM load mitigation

ÅRE avoidance

Č Which gas mixture and quantities should be used? 

Č Are all goals attainable simultaneously?

Å Second line of defense:

Å In-flight RE beam energy dissipation
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[M. Lehnen, IAEA FEC 2018]
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The JET SPI system

Å Installed in 2018-2019 through an 

international Eurofusion-US DOE-ITER-JET 

Operator collaboration [Baylor NF 2019]

Å 3 barrels: 12.5, 8, 4 mm pellet diameters

Å 1021-1023 atoms per pellet (10-600 Pa.m3)

Å Pellet composition:

ÅD2, Ne, Ar, D2+Ne, D2+Ar mixtures

Å Mechanical punch for Argon pellets

Å Pellet speed: 100-500 m/s, depending on 

size, species

Å Flight time 20-50 ms

Å Independent firing of all barrels (+/- 0.2 ms)
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Shardplume
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Outline

Å Introduction

Å Mitigating a RE beam

ÅHigh-Z SPI 

Å D2 SPI 

Å The ñD2effectò : development of the MHD instability

Å Pre-collapse conditions

Å Mode characterization

Å The ñD2effectò: runaway regeneration during collapse

Å The final collapse: analysis and modelling

Å Energy conversion

Å The ñD2effectò in VDE cases
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Previous results on runaway mitigation at JET

Å Typical runaway scenario: 

Å argon injection from a disruption 

mitigation valve (6 Pa.m3)

Å Limiter plasma

Å High Z massive gas injection 

accelerates the RE current decay

Å Free electron density increases

Å HXR/neutrons increase Č enhanced 

collisions/dissipation

Å Destabilizes the beam vertically

Å Only works when the companion 

plasma electron density is low

ÅHigher density companion plasma: 

no effect due to penetration shielding 

and density saturation

High-Z MGI accelerates beam current decay, up 
to a certain companion plasma electron density
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[ReuxAPS 2017]
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Runaway suppression: high Z injections

Å Mitigation experiments: fire a Shattered Pellet in the middle of a runaway beam

Å Target: ~ 600 kA runaway beam, low density companion plasma (ne,l ~ 2x1019

m-2)

Å Tested: 

Å SPI 245 Pa.m3, argon

Å SPI 70 Pa.m3, argon

Å SPI 422 Pa.m3, neon

Å SPI 121 Pa.m3, neon

Å In all cases: 

Å Beam successfully shortened (500 

ms instead of 1 s)

Å Linear ramp-down rate 4.8-9 MA/s 

(larger with bigger pellets)

Å Increase of HXR & neutron rate 

Å Vertical destabilization

Å Final impact with PFC heating
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SPI trigger

Ar SPI 245 Pa.m3

No SPI Ar, SPI 70 Pa.m3

Ne SPI 422 Pa.m3

Ne, SPI 121 Pa.m3

High-Z SPI accelerates the RE current 
decay but does not prevent impacts
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Runaway suppression : SPI vs. MGI

Å On the same target runaway beam: compare MGI and SPI in similar conditions.

Å SPI 12.5 mm (200 Pa.m3), argon: 

Å Beam successfully shortened. 

(~500 ms instead of 1.0 s). 

Å Linear ramp-down rate 6.3 MA/s

Å MGI 280 Pa.m3, argon:

Å Beam successfully shortened

Å Linear ramp-down rate ~ 5.2 MA/s.

Å In both cases: increase of 

neutron rate & HXR, vertical 

destabilization, heat loads on 

PFCs
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SPI trigger

Ar MGI 280 Pa.m3

Ar SPI 12.5 mm (200 Pa.m3)

HXR
No large difference between MGI 
and SPI in beams with low-density 

companion plasmas
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Runaway beam suppression :D2 SPI

Å Current increases shortly after SPI

Å Similar observations on DIII-D [Paz-

Soldan PPCF 2019], Compass [Mlynar PPCF 

2019], AUG [Pautasso NF 2020], FTU

Å Neutrons and HXR drop

Å Electron density drops to <1018 m-2

Å Plasma recombination

Å Vloop decreases

Å Argon flushed-out

Å VUV dominated by D lines [Sridhar PhD]

Å Prad increases

Å Runaways disappear in a few ms

Å Synchrotron emission stops

Å Large neutron/HXR spike

Å Huge MHD burst

Å No visible localized damage

Å Current decay similar to an ohmic CQ

SPI trigger

#95135
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Modelling the effect of D2 SPI on the companion 
plasma

Å Modelling the D2 effect using a 1D diffusion model [Hollmann NF 2019]

ÅComputes densities and temperatures with radiated power as an input

Å Decrease of temperature is confirmed by the model, but not down to 

recombination

Å The measured density (recombination) can only be matched if 99% of 

the radiated power comes from non-thermal sources (i.e. runaways)

Å Ongoing effort to understand the power balance of the purged 

beam/plasma system: ECE radiation, synchrotron lossesé

C. Reux et al. Theory and Simulation of Disruptions Workshop 19/07/2021

[S. Sridhar PhD thesis2020]
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Runaway beam suppression: heat loads

Å Complete and fast (~1ms) dissipation of the runaway beam

Å But no visible heat loads

Å Heat loads of D2-mitigated runaway beams below the measurement 

threshold of the IR camera (0.5 MJ.m-2 vs up 10 MJ.m-2 for high-Z or 

non-mitigated)

C. Reux et al. Theory and Simulation of Disruptions Workshop 19/07/2021

IR camera (3-3.5 µm)
- synchrotron emission

Two mechanisms at play:

Å Large MHD instability

Å Absence of RE regeneration
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Triggering the instability

Å Current rises up to low q, but not 

necessarily q=2 as in previous studies 

[Paz-Soldan PPCF 2019]

Å Benign terminations associated with 

qedge between 2 and 5.

Å Bad terminations happen at any qedge.

Å Large MHD burst probably not always 

a current-limit instability

Å The normalized growth rate of the 

instability dBpol/dt is better correlated 

to the impurity content or the impact 

severity compared to the magnitude of 

the instability ŭBpol/Bpol

C. Reux et al. Theory and Simulation of Disruptions Workshop 19/07/2021

A fast, rather low-q MHD instability is 
correlated with benign terminations.
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Hollow current profile

Å Current profile before the final collapse: evidence of a hollow 

profile from SOFT simulations

Å Reconstructions of the measured IR synchrotron emission

Å Best match between the measurement and the simulations:

Å Pitch angle between 0.1 and 0.3

ÅRE energy < 15 MeV

Å Hollow current profile

Hollow profile: key ingredient to 
benign terminations? C. Reux et al. Theory and Simulation of Disruptions Workshop 19/07/2021 15
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Characterization of the instability

Å Magnetic islands are visible in synchrotron pictures before the collapse

m=6 m=5 m=4 (briefly)

Å Two m=5 patterns visible, one moving 

inwards

Å m=4 pattern at 0.35 normalized radius 

Č very likely to be the inner m=4 island

Å n=1 most probable mode from Mirnov

analysis

RawMirnov signals

C. Reux et al. Theory and Simulation of Disruptions Workshop 19/07/2021

n=1
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Jorek MHD simulations

Å Using the q-profile determined above, MHD simulations of the final 

instability were made with Jorek.

Å Instability governed by a double tearing mode on both q=4 surfaces

Å Destruction of the entire confinement in ~100 µs 

ÅCompatible with the experimental timescale (10-20 µs)

Å 95% of REs lost to the wall through stochastization.

C. Reux et al. Theory and Simulation of Disruptions Workshop 19/07/2021

[V. Bandaru et al., 
PPCF 63 035024, 

2021]

nRE

measured

Joreksimulations confirm
RE lossesand the 

timescaleof the collapse

17

n=0


